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SUMMARY:  

This paper investigated the mechanism of the air pollutant’s reactive dispersion in the ideal urban environment via a 

hybrid numerical intelligence model consisting of Architectural Institute of Japan (AIJ) wind tunnel data, k-ε model 

Computational fluid dynamics (CFD) simulation, and Artificial Neural Network (ANN) machine learning algorithms. 

The results showed that the normalized velocity distribution stay unchanged under different inflow speeds. The 

phenomenon of pollution accumulation on the rear of the building resulting from the turbulent kinetic energy (TKE) 

distribution was discovered. It was determined that the pollutant spreading region enlarges proportionally with the 

increase in Damköhler number of ozone (DaO3) number when it is close to 1. In contrast, the pollutant spreading region 

was unaffected by the Damköhler number of nitrogen oxide (DaNO) number when it is far less than 1. Moreover, the 

ANN model showcased the strong advantage of characterizing the sophisticated nonlinear spatial diffusion and 

reaction of the air species by generating acceptably accurate predictions with significantly lower computational and 

time costs compared with CFD simulation. 
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1. INTRODUCTION 

The increasing automobile exhaust brought by rapid growth in the number of vehicles exposes the 

residents in the metropolitan area to the great danger of respiratory diseases. A thorough 

investigation of pollutant dispersion mechanism and multi-pollutant interaction will be an 

indispensable reference to guide the improvement of a city ventilation system. In recent years, 

various machine learning algorithms have been implemented to investigate the sophisticated 

interaction between environmental parameters and pollutant distribution and reaction 

characteristics (Hossain, 2014; Lange et al., 2021; Weerasuriya et al., 2022). Although the previous 

studies rendered valuable insights into the single pollutant dispersion issue, the essential chemical 

reaction between nitrogen oxides and secondary pollutants remained blank. Thus, this paper aims 

to investigate the mechanism of the air pollutant’s reactive dispersion via a hybrid numerical 

intelligence model consisting of the AIJ wind tunnel data, the k-ε model of CFD simulation, and 

the ANN model of the machine learning algorithm. Moreover, the impact of three different 

reference inflow speeds, four different DaO3 numbers, and 5 different DaNO & DaNO2 numbers on 



 

 

pollutant diffusion patterns were explored explicitly. 

 

 

2. METHODOLOGY 

2.1 CHEMISTRY MODELLING AND PHYSIOCHEMICAL COUPLING  
 

In this simulation, the transportation of reactive pollutants: NO, NO2, and O3 with the chemical 

reaction are modeled as Eq. 1, 2 and 3. 
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where D denotes the molecular diffusivity of the pollutants, Kc indicates the eddy diffusivity of 
the pollutants. The SNO and SNO2 represent the emission sources of NO and NO2, and the square 
bracket ([ ]) denotes the mean concentration of pollutant species. JNO2

indicates the photolysis rate 
of NO2 in Equation (6). k1  and k2 represent the constant reaction rate in Equations (7-8), 
respectively.  

 

The Damköhler number (Da), which is used to measure the rates of physical transportation and 

chemical reaction, is defined as the Eq. 4: 
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(4) 

 

2.2 CFD COMPUTATIONAL SETTINGS AND ANN DATA GENERATION  

This paper displayed a standard k-ε model-based CFD simulation with coupled physical flow fields 

and chemical reactions, to study the influence of photochemical reactions on pollutant diffusion in 

an ideal urban environment. The dimension of the building, computational domain, boundary 

conditions, the hexahedral grid, and emission sources can be found in Fig. 1. The CFD simulation 

results matched well with wind tunnel data. The physiochemical coupling of the pollutant 

dispersion model is validated to support the following results and discussion. 

  
Figure 1. Dimensions of the building in the Computational domain (Left) and Boundary conditions, the 

hexahedral grid, and emission sources (Right) 

 

Subsequently, an ANN-based machine learning algorithm was trained based on the results of the 

aforenoted CFD simulation. As shown in Fig. 2, the proposed ANN model was built with optimal 



 

 

six neutrons, and 181 parallel independent sub-models to guarantee prediction accuracy while 

maintaining a reasonably accessible computational cost. 

 

 
 

Figure 2. Architecture of the ANN model  

 

 

 

3. RESULTS AND DISCUSSION 

3.1 AIR SPECIES POLLUTANT ACCUMULATION ON THE REAR OF BUILDINGS 

 

  

 

Figure 3. Comparison of velocity & TKE contour under normalized velocity contour with 3 m/s reference 

inflow speed at z=0.5H. 
The normalized wind velocity contour remains almost unchanged under different wind speeds. 

There is a low-speed region at the rear of the building which results from the two flow separation 

areas, as shown in Fig. 3. As a result of lower TKE at the building leeward side, the air species 

pollutant is restricted in the back of the building. 

 

3.2 IMPACT OF DAO3 AND DANO NUMBER ON POLLUTANT SPREADING REGION 

  
(a) (b) 

 

Figure 4. NO concentration contour with DaO3 numbers of 0.252, 0.756 and 1.259 (a), NO concentration contour 

with DaNO of 0.0252, 0.0126, and 0.0063 (b) 



 

 

The NO species diffusion region grows proportionally as the DaO3 approaches 1, as shown in Fig. 

4. This is caused by the turbulence dispersion process overshading the chemical reactions during 

the process.  

  

The NO species diffusion remained unchanged under the influence of the DaNO number, while the 

DaNO number is significantly lower than 1. This resulted from the turbulent dispersion process is 

much lower than the chemical reaction process, as shown in Fig. 4.  

 

3.3 PREDICTION ACCURACY OF THE ANN MODEL  

 
 

Figure 5. Comparison between the ANN model and CFD simulation results of non-dimensional NO 

concentration distribution comparison at z=0.03 m. 

 

As shown in Fig. 5, the capability of the ANN model on characterizing the complex nonlinear 

spatial diffusion and reaction of the air species is demonstrated by the acceptably small relative 

error between ANN prediction results and the CFD simulation. 

 

 

4. CONCLUSION 

It was shown by the velocity & TKE contour plot that the normalized wind velocity distribution 

was unaffected by the variation in inflow speed, and the accumulation of pollution on the rear of 

the building resulted from the difference between the TKE at the leeward side of the building and 

the street. Moreover, there is an obvious proportional relationship between the DaO3 number and 

pollutant spreading region, while the DaO3 number is close to 1. Whereas this relationship cannot 

be found when the DaNO number is much less than 1. Furthermore, the superior advantage of the 

ANN model is proved by predicting complex nonlinear spatial diffusion and reaction of the air 

species with an acceptable accuracy but dramatically higher computational and time efficiency 

compared with CFD simulation. 
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